Author Affiliations
Abstract
1 Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
3 Silicon Technologies Centre of Excellence, Nanyang Technological University, Singapore 639798, Singapore
4 Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N—Palaiseau, 91120 Palaiseau, France
We report mid-infrared Ge-on-Si waveguide-based PIN diode modulators operating at wavelengths of 3.8 and 8 μm. Fabricated 1-mm-long electro-absorption devices exhibit a modulation depth of >35 dB with a 7 V forward bias at 3.8 μm, and a similar 1-mm-long Mach–Zehnder modulator has a Vπ·L of 0.47 V·cm. Driven by a 2.5Vpp RF signal, 60 MHz on-off keying modulation was demonstrated. Electro-absorption modulation at 8 μm was demonstrated preliminarily, with the device performance limited by large contact separation and high contact resistance.
Photonics Research
2019, 7(8): 08000828
Author Affiliations
Abstract
1 Centre de Nanosciences et de Nanotechnologies, CNRS, University of Paris-Sud, Université Paris-Saclay, C2N–Palaiseau, 91120 Palaiseau, France
2 University Grenoble Alpes and CEA, LETI, Minatec Campus, F-38054 Grenoble, Grenoble Cedex, France
3 Technology R&D, STMicroelectronics SAS, 850 rue Jean Monnet–38920 Crolles, France
Near-infrared germanium (Ge) photodetectors monolithically integrated on top of silicon-on-insulator substrates are universally regarded as key enablers towards chip-scale nanophotonics, with applications ranging from sensing and health monitoring to object recognition and optical communications. In this work, we report on the high-data-rate performance pin waveguide photodetectors made of a lateral hetero-structured silicon-Ge-silicon (Si-Ge-Si) junction operating under low reverse bias at 1.55 μm. The pin photodetector integration scheme considerably eases device manufacturing and is fully compatible with complementary metal-oxide-semiconductor technology. In particular, the hetero-structured Si-Ge-Si photodetectors show efficiency-bandwidth products of ~9 GHz at ?1 V and ~30 GHz at ?3 V, with a leakage dark current as low as ~150 nA, allowing superior signal detection of high-speed data traffic. A bit-error rate of 10?9 is achieved for conventional 10 Gbps, 20 Gbps, and 25 Gbps data rates, yielding optical power sensitivities of ?13.85 dBm, ?12.70 dBm, and ?11.25 dBm, respectively. This demonstration opens up new horizons towards cost-effective Ge pin waveguide photodetectors that combine fast device operation at low voltages with standard semiconductor fabrication processes, as desired for reliable on-chip architectures in next-generation nanophotonics integrated circuits.
Photonics Research
2019, 7(4): 04000437

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!